

() Anivance

PRODUCT INFORMATION SHEET

ORGAN-ON-CHIP CONFIGURATION

■ ORGAN-ON-CHIP

TECHNICAL FEATURES	
Dimensions of the chip	20 x 35 x 49 mm
Number of channel	2 channels
Upper channel height	1 mm
Lower channel height	0 . 2 mm
Channel surface area	35 . 66 mm²
Membrane pore size	0 . 4 μm
Operating temperature	4~40°C
Sterilization method	Ethylene oxide

■ INTRODUCTION

The Anivance Al organ-on-chip device is a precision-engineered microfluidic platform designed to support the controlled culture of living cells under physiologically relevant conditions. The chip features dual-channel architecture separated by a permeable membrane, enabling dynamic co-culture of multiple cell types while maintaining compartmentalized microenvironments. Integrated microfluidic flow pathways allow for precise regulation of shear stress, nutrient exchange, and biochemical gradients, supporting the development of tissue-specific models for research use.

materials, the chip is optimized for real-time imaging, quantitative analysis, and long-term culture stability. Its flexible design accommodates a range of experimental configurations, enabling researchers to study complex tissue interactions and functional responses in controlled laboratory settings.

▼ KEY FEATURES

Compatible with Over 10 Cell Types

The platform supports multi-organ modeling with validated cell types across lung, liver, skin, intestine, kidney, and cancer models, enabling a broad range of physiological and disease-related research applications.

2 Low Cell Input Requirement

The chip's optimized microchannel geometry minimizes cell input volume, enabling the use of primary cells, patient-derived samples.

3 Support for Compartmentalized Co-culture

The dual-channel configuration enables spatially controlled co-culture, allowing in vitro investigation of intercellular interactions and tissue interface dynamics.

4 Dynamic Perfusion with Physiological Shear Stress

Continuous medium flow via peristaltic pumping mimics physiological shear stress while maintaining stable nutrient exchange to support long-term cell viability.

6 Optimized for High-Resolution Imaging

The chip is manufactured with optically transparent, biocompatible materials, enabling high-resolution imaging and real-time monitoring throughout long-term culture studies.

6 Flexible Platform for Assay Expansion

The platform is designed to integrate with systems, including:

- · Chip Holder for high-content and confocal imaging.
- · Chip MPS for dynamic perfusion and long-term culture.
- · Inhaled Drug Delivery System for aerosolized drug exposure.

CONTACT AND SUPPORT

For information regarding Anivance AI products, services, or technical support, please contact us through any of our official channels.

www.anivance.io

Copyright © Anivance Al All Rights Reserved.